Polymatroids and Mean - Risk Minimization in Discrete Optimization Alper

نویسنده

  • VISHNU NARAYANAN
چکیده

In financial markets high levels of risk are associated with large returns as well as large losses, whereas with lower levels of risk, the potential for either return or loss is small. Therefore, risk management is fundamentally concerned with finding an optimal tradeoff between risk and return matching an investor’s risk tolerance. Managing risk is studied mostly in a financial context; nevertheless, it is relevant in any area with a significant source of uncertainty. The mean-risk tradeoff is well-studied for problems with a convex feasible set. However, this is not the case in the discrete setting, even though, in practice, portfolios are often restricted to discrete choices. In this paper we study mean-risk minimization for problems with discrete decision variables. In particular, we consider discrete optimization problems with a submodular mean-risk minimization objective. We show the connection between extended polymatroids and the convex lower envelope of this mean-risk objective. For 0-1 problems a complete linear characterization of the convex lower envelope is given. For mixed 0-1 problems we derive an exponential class of conic quadratic inequalities. We report computational experiments on a risk-aware capital budgeting problem with uncertain returns on investments with discrete choices. The results show significant improvements in the solvability of the problem with the introduced convexification method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymatroids and mean-risk minimization in discrete optimization

We study discrete optimization problems with a submodular mean-risk minimization objective. For 0-1 problems a linear characterization of the convex lower envelope is given. For mixed 0-1 problems we derive an exponential class of conic quadratic inequalities. We report computational experiments on risk-averse capital budgeting problems with uncertain returns.

متن کامل

Lifted Polymatroid Inequalities for Mean-risk Optimization with Indicator Variables

We investigate a mixed 0 − 1 conic quadratic optimization problem with indicator variables arising in mean-risk optimization. The indicator variables are often used to model non-convexities such as fixed charges or cardinality constraints. Observing that the problem reduces to a submodular function minimization for its binary restriction, we derive three classes of strong convex valid inequalit...

متن کامل

Discrete Polymatroids

The discrete polymatroid is a multiset analogue of the matroid. Based on the polyhedral theory on integral polymatroids developed in late 1960’s and in early 1970’s, in the present paper the combinatorics and algebra on discrete polymatroids will be studied.

متن کامل

A Regret Minimization Approach in Product Portfolio Management with respect to Customers’ Price-sensitivity

In an uncertain and competitive environment, product portfolio management (PPM) becomes more challenging for manufacturers to decide what to make and establish the most beneficial product portfolio. In this paper, a novel approach in PPM is proposed in which the environment uncertainty, competitors’ behavior and customer’s satisfaction are simultaneously considered as the most important criteri...

متن کامل

DISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM

Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007